78 research outputs found

    TERRA-REF Analysis Workbench: Container-based Environments for Low-Barrier Access to Research Data

    Get PDF
    TERRA-REF involves automated transfer and processing of large volumes of plant sensing data, in order to accelerate the study of genomic and phenomic observations in controlled field experiments. Multiple terabytes per day are moved and various workflows are triggered to derive metadata, traits and genome sequences from raw input formats. The TERRA-REF Analysis Workbench environment allows users to launch analysis environments with preconfigured and customizable software to examine and compute against this very large reference dataset

    Increasing racial diversity in the North American Plant Phenotyping Network through conference participation support

    Get PDF
    A key goal of the North American Plant Phenotyping Network (NAPPN) annual conference is to cultivate a new generation of scientists from diverse backgrounds. As part of their effort to diversify the plant phenomics research community, NAPPN acquired funding to cover all attendance costs for participants from historically black colleges and universities (HBCU) for the 2022 annual meeting. Seven award recipients represented the first attendees from HBCUs in the conference’s 6-year history. In this commentary, we report on the impact of the conference awards, including lessons learned, and the future of the award

    Data-Driven Artificial Intelligence for Calibration of Hyperspectral Big Data

    Get PDF
    Near-earth hyperspectral big data present both huge opportunities and challenges for spurring developments in agriculture and high-throughput plant phenotyping and breeding. In this article, we present data-driven approaches to address the calibration challenges for utilizing near-earth hyperspectral data for agriculture. A data-driven, fully automated calibration workflow that includes a suite of robust algorithms for radiometric calibration, bidirectional reflectance distribution function (BRDF) correction and reflectance normalization, soil and shadow masking, and image quality assessments was developed. An empirical method that utilizes predetermined models between camera photon counts (digital numbers) and downwelling irradiance measurements for each spectral band was established to perform radiometric calibration. A kernel-driven semiempirical BRDF correction method based on the Ross Thick-Li Sparse (RTLS) model was used to normalize the data for both changes in solar elevation and sensor view angle differences attributed to pixel location within the field of view. Following rigorous radiometric and BRDF corrections, novel rule-based methods were developed to conduct automatic soil removal; and a newly proposed approach was used for image quality assessment; additionally, shadow masking and plot-level feature extraction were carried out. Our results show that the automated calibration, processing, storage, and analysis pipeline developed in this work can effectively handle massive amounts of hyperspectral data and address the urgent challenges related to the production of sustainable bioenergy and food crops, targeting methods to accelerate plant breeding for improving yield and biomass traits

    Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels

    Get PDF
    ACKNOWLEDGEMENTS We thank Dennis Ojima and Daniel L. Sanchez for their encouragement on this topic. The authors gratefully acknowledge partial support as follows: J.L.F., L.R.L., T.L.R., E.A.H.S., and J.J.S., the Sao Paulo Research Foundation (FAPESP grant# 2014/26767-9); J.L.F., L.R.L., K.P., and T.L.R., The Center for Bioenergy Innovation, a U.S. Department of Energy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science (grant# DE-AC05-00OR22725); L.R.L., the Sao Paulo Research Foundation, and the Link Foundation; J.L.F. and K.P., USDA/NIFA (grant# 2013-68005-21298 and 2017-67019-26327); T.L.R., USDA/NIFA (grant# 2012-68005-19703); D.S.L. and S.P.L., the Energy Biosciences Institute. Data availability The DayCent model (https://www2.nrel.colostate.edu/projects/daycent/) is freely available upon request. Specification of DayCent model runs and automated model initialization, calibration, scenario simulation, results analysis, and figure generation were implemented in Python 2.7, using the numpy module for data processing and the matplotlib module for figure generation. Analysis code is available in a version-controlled repository (https://github.com/johnlfield/Ecosystem_dynamics). A working copy of the code, all associated DayCent model inputs, and analysis outputs are also available in an online data repository (https://figshare.com/s/4c14ec168bd550db4bad; note this URL is for accessing a private version of the repository, and will eventually be replaced with an updated URL for the public version of the repository, which will only be accessible after the journal-specified embargo date).Peer reviewedPostprintPublisher PD

    Workshop Report: Container Based Analysis Environments for Research Data Access and Computing

    Get PDF
    Report of the first workshop on Container Based Analysis Environments for Research Data Access and Computing supported by the National Data Service and Data Exploration Lab and held at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign

    Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential

    Full text link
    In the age of big data, soil data are more available and richer than ever, but – outside of a few large soil survey resources – they remain largely unusable for informing soil management and understanding Earth system processes beyond the original study. Data science has promised a fully reusable research pipeline where data from past studies are used to contextualize new findings and reanalyzed for new insight. Yet synthesis projects encounter challenges at all steps of the data reuse pipeline, including unavailable data, labor-intensive transcription of datasets, incomplete metadata, and a lack of communication between collaborators. Here, using insights from a diversity of soil, data, and climate scientists, we summarize current practices in soil data synthesis across all stages of database creation: availability, input, harmonization, curation, and publication. We then suggest new soil-focused semantic tools to improve existing data pipelines, such as ontologies, vocabulary lists, and community practices. Our goal is to provide the soil data community with an overview of current practices in soil data and where we need to go to fully leverage big data to solve soil problems in the next century

    BrAPI-an application programming interface for plant breeding applications

    Get PDF
    Motivation: Modern genomic breeding methods rely heavily on very large amounts of phenotyping and genotyping data, presenting new challenges in effective data management and integration. Recently, the size and complexity of datasets have increased significantly, with the result that data are often stored on multiple systems. As analyses of interest increasingly require aggregation of datasets from diverse sources, data exchange between disparate systems becomes a challenge. Results: To facilitate interoperability among breeding applications, we present the public plant Breeding Application Programming Interface (BrAPI). BrAPI is a standardized web service API specification. The development of BrAPI is a collaborative, community-based initiative involving a growing global community of over a hundred participants representing several dozen institutions and companies. Development of such a standard is recognized as critical to a number of important large breeding system initiatives as a foundational technology. The focus of the first version of the API is on providing services for connecting systems and retrieving basic breeding data including germplasm, study, observation, and marker data. A number of BrAPI-enabled applications, termed BrAPPs, have been written, that take advantage of the emerging support of BrAPI by many databases

    Shifts in Species Composition Constrain Restoration of Overgrazed Grassland Using Nitrogen Fertilization in Inner Mongolian Steppe, China

    Get PDF
    Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown
    • …
    corecore